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Abstract
We present and investigate a general nonlinear growth network model which
incorporates accelerated growth of nodes and edges, where the growth rates of
edges and nodes are all time-dependent power-law functions. The acceleration
of edges determines the proportion of the internal edges to the external edges,
which play a key role influencing the structure of the network. On the other
hand, the effects of the acceleration of nodes on the topology of the network are
discussed in the present work. This model predicts an observable two-regime
scale-free degree distribution, where the scaling exponents are γ1 < 2 and
γ2 ≈ 3, respectively. The crossover point kcross of the degree distribution is
adjusted by the growth rates of nodes and edges. The nontrivial clustering
coefficient and degree assortativity coefficient are relevant to the acceleration
of nodes and edges.

PACS number: 05.70.Jk

1. Introduction

The past few years have witnessed an intriguing activity devoted to understanding the topology
of many kinds of complex networks, including the WWW [1], Internet [2], proteins [3], word
web [4], scientific collaborations [5] and citation [6], etc. One of the most impressive advances
in this field is the revelation that a number of large growing networks are scale free, i.e. the
degree distribution has the power law form P(k) ∼ k−γ .

A simple model that explains the occurrence of scale-free networks was proposed by
Barabási and Albert [7] (BA model). Two basic principles in this model are the network
growing and the preferential attachment: (1) at each time step, a new node is added, it connects
to earlier nodes by a certain number of links; (2) the probability of an earlier node to get a new
link is proportional to the degree of this node. Their model results in scale-free networks with
γ = 3. It is clear that the BA model describes a linear growth network. The growth rate of
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nodes is constant, and the total number of edges in this model is a linear function of the size.
Soon after the BA model was formulated, many scale-free networks followed it, such as those
with nonlinear preferential attachment [9] or those with initial attraction [10]. Other examples
are those networks with dynamic edge rewiring [8] or with gradual node ageing [11]. But still,
all of them grow in a linear way.

In contrast, many real systems may grow nonlinearly. A good example is the WWW,
which has shown that the total number of edges increases more quickly than the number of
nodes. Hence, the density of the edges in the network becomes higher and higher during its
evolution [1]. Such networks are usually called ‘accelerating networks’ [12]. It is intuitive that
every active node in the network tends to link with more other nodes because of the interaction
between them. Then the growth of the edges is naturally accelerated and the density of the
edges increases with time. Inspired by this idea, several accelerated growth models, which
assumed that the number of links between the old nodes had a power law growth in time, have
been presented [12, 13]. In directed network, a modified growth fashion is that the number of
links between every new node and the old nodes is a nonlinear function of time, and no new
links between the older nodes are allowed [14]. The evolution of the networks in these models
of accelerated growth was made using a preferential attachment scheme as in the BA network.

These accelerating networks consider the growth of the number of edges as nonlinear;
however, the nodes are still added into the system in a linear way. In the real world, the new
nodes may also grow at different rates [15]. We contend that the active old nodes will tend
to invite more new members to join the system while a network is under accelerating growth.
Therefore, the nodes may grow acceleratedly as well. If the nonlinear growth of nodes and
edges is considered at the same time, what is the effect of the cooperation of such two factors?
This problem has long been neglected. In this paper, we introduce a simple model with
preferential attachment accounting for the two-hybrid accelerated growth procedures—the
accelerated growth of nodes (AGN) and the accelerated growth of edges (AGE) —to fill this
gap.

2. The model

Considering AGN and AGE, the growth rate of nodes and edges is no longer constant. First, we
simply assume that the growth rate of nodes is a power law function tη with η � 0 depending
on the evolution time t . Due to AGN, at each time step, more than one node will be added
into the network. In order to distinguish different nodes, we construct a node sequence in the
following way: when �N new nodes (�N > 1) are added into the network at a time step, we
label them as N0 + 1, N0 + 2, . . . , N0 + �N , where N0 is the total number of the pre-existing
nodes. Eventually, every node is labelled by a unique integer i(i = 1, 2, . . . , N), and the total
number of nodes is N(t) = t1+η/1 + η at time t . Second, the total number of edges grows in
two ways: external attachment—the new edges between older nodes and new nodes; internal
attachment—the additional edges generated between all existing nodes. We assume that every
new node gets a fixed number of links from older nodes when it joins the network. On the
other hand, we assume that the growth rate of internal edges is a0t

δN(t) at time t , where a0 is
a positive constant coefficient and δ is a parameter to adjust the growth speed.

The network is constructed as the following algorithm:

(a) The network is initialized with m connected nodes.

(b) Nodes growth: at each increment of time, we add tη new nodes into the network (the actual
number of new nodes is a nearest integer of tη since the evolving time is discrete). Every
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incoming node with m0 edges connects to the old nodes following preferential attachment
as

�i = ki∑
j kj

, (1)

where ki is the ith node’s degree. We assume that there are no links between these newly
added nodes at the time they join the network.

(c) Internal edges growth: after the new nodes have joined the network, a0t
δN(t) new internal

edges are emerged between all existing nodes. The nodes i and j at the end of each new
internal links are chosen according to their degrees as expressed in equation (1).

(d) Repeat (b), (c) until the network reaches the size we need.

The total number of edges is E(t) = a0t
2+η+δ/(1 + η)(2 + η + δ) + m0t

1+η/1 + η at time t .
Consequently, the density of the edges is also a time-dependent power law function
e = a0t

1+δ/2 + η + δ + m0 with exponent 1 + δ, increasing with time certainly. It should
be noted that external attachment has no contribution to the growth of the density of edges
because m0 is a constant. Later we will show that the topology of networks is dramatically
affected by internal edges. The competition between the external edges and the internal edges
will result in some new features that are distinct from previous linear growth model.

Obviously, when η = 0, a0 = 0, the model is topologically equivalent to the BA model.
For η > 0, a0 = 0, acceleration of nodes leads to the acceleration of external edges, but no
internal edges are created as network grows, thus the density of the edges does not increase
with time. For η = 0, a0 > 0 (δ > −1.0), the nodes grow at a constant rate, only the internal
edges grow acceleratedly. On the other hand, if δ � 0 and a0 � 1, then E(t) � t2, the average
degree 〈k〉 ∼ t . But for most real systems, 〈k〉 should be much smaller than the size of the
network, so we only discuss the instance that −1 < δ < 0 and 0 � a0 � 1.

3. The analysis of degree distribution

Let ki(t) denote the degree of node i at timet , according to continuum theory, ki(t) evolves as

dki

dt
= m0t

ηki∑
j kj

+ 2a0N(t)tδ
ki∑
j kj

. (2)

The first term on the right-hand side describes the contribution due to the addition of new
nodes, and the second term account for the new internal edges emerged between all existing
nodes. Let C = a0/2 + η + δ, equation (2) becomes

dki

dt
= (1 + η)m0kit

η

2[Ct2+η+δ + m0t1+η]
+

kit
δ

Ct1+δ + m0
. (3)

The solution of equation (3), with the initial condition that every node i which is introduced
into the network at time ti has ki(ti) = m0, is

ki(t) = m0
tB(CtA + m0)

A+B
A

tBi
(
CtAi + m0

) A+B
A

, (4)

where A = 1 + δ, B = 1 + η/2. If nodes i and j are added into the network at the same time
(ti = tj ), equation (4) implies that their degrees are the same.

In the continuous approximation, the degree distribution can be read as [16]

P(k, t) = −ω(t)
∂ti

∂ki

∣∣∣∣
ki=k

, (5)
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where ω(t) is the distribution function for the nodes which are added in the network at
time ti . In our model, ω(t) = t

η

i /t1+η. Combining with equation (4), we obtain

P(k, t) = 1

kt2B

ti
(
CtAi + m0

)
[
(2BC + AC)tAi + Bm0

] , (6)

where ti(ki = k, t) is a function of ki determined by equation (4). From equations (4) and (6),
there are two limiting cases:

(i) When CtAi � m0, according to equations (6) and (4), one can get ti ∼ t
k1/A+2B , thus the

degree distribution will scale as

P(k) ∼ k
−(

1+η

2+η+δ
+1)

. (7)

(ii) When CtAi � m0, according to equations (6) and (4), yields ti ∝ t (CtA+m0)
A+B
AB

k1/B , thus the
degree distribution has the following form:

P(k, t) ∼ (CtA + m0)
2(A+B)

A k−3. (8)

These two limiting cases imply that the degree distribution has two power-law regimes.
The crossover point kcross of such two power-law regimes can be expressed approximately

kcross ∼ t
1+η

2

(
a0

2 + η + δ
t1+δ + m0

) 3+2δ+η

2(1+δ)

. (9)

Below kcross, the degree distribution is a ‘slowly decaying regime’, the scaling exponent
γ1 = 1 + 1+η

2+η+δ
, where 3

2 < γ1 < 2 in the considered model. Above kcross, the degree
distribution is a ‘rapidly decaying regime’, where the scaling exponent γ2 = 3 instead.

From above, it is clear that the distinct scaling behaviours are determined by the proportion
of the internal edges to the external edges, namely CtA/m0. When the external edges are
prevailing, the evolution of the network is similar to the BA model because the network is
mainly governed by the connections between incoming nodes and old nodes with preferential
attachment. If the parameters δ and a0 are large enough, the internal edges are more dominant
and then the ‘slowly decaying regime’ holds all the trumps. Therefore, the accelerated growth
of internal edges (AGIE) is essential for observing the ‘slowly decaying regime’ with scaling
exponent γ < 2. On the other hand, from equation (9), one can see that kcross increases with
a0, δ and η. This means that both the AGIE and the AGN are helpful to inhibit the ‘rapidly
decaying regime’ for a large network with long-time evolution.

4. Simulation results and discussion

Based on the considered model, the fraction of internal edges increases with δ and a0, and the
growth rate of nodes is positive in relation to η. We have performed numerical simulations
with different values of the growth rate parameters a0, η, δ to reveal the effect of AGN and
AGIE on the topology of the network. At the beginning, we generate a small network with ten
seed nodes, and let every seed has identical initial degree equal to m0 to prevent any seed being
too much stronger than the others. According to the analytic results, the two power law phases
are relevant to the evolving time. So the evolving time is fixed as t = 104 while investigating
the degree distribution numerically. As for clustering coefficient and assortativity coefficient,
the effects of AGN and AGIE with different growth rate parameter values on the network
of size 5000 are discussed. In order to be consistent with the statistical characteristics, the
numerical results are averaged over 30 or 100 independent realistic networks.
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(a) (b)

(c)

Figure 1. (a) Degree distribution for various values of δ with a0 = 0.05, η = 0.0. The slopes
of guidelines are −1.61 (solid line) and −2.95 (dash line) respectively. kc indicates the crossover
point of the degree distribution approximately. (b) Degree distribution for different values of a0
with η = 0.0, δ = −0.7. The slopes of guidelines are −2.95 (dash line), −1.83 (dot line), and −3.0
(solid line) respectively. (c) Degree distribution for various values of η with a0 = 0.05, δ = −0.5.
kc and k′

c indicate the crossover point of the degree distribution approximately. The slope of
guideline is −1.76. In all cases, we fix t = 104 and m0 = 2. The data are averaged over
100 networks.

4.1. Degree distribution

The effects of the parameters δ, a0 and η on degree distribution of the considered model are
shown in figure 1. As depicted in the figure 1(a), according to our numerical simulation, when
the value of the parameter δ is very small (δ � −0.7), as a result of slow increase of internal
edges, the degree distribution is scale free with exponent γ2 ≈ 3. But when δ is too large
(δ � −0.3), the exponent of the degree distribution is less than 2. This is owing to fast increase
of the internal edges and edges density. Only when δ is intermediate (0.6 � δ � −0.4), one
can observe two scaling regimes simultaneously (see scatter in figure 1(a)) with the scaling
exponent γ1 < 2 and γ2 ≈ 3, respectively. Figure 1(b) shows the effect of a0 on the degree
distribution. When a0 is very small, we only observe the ‘rapidly decaying regime’ with
large exponent, namely γ2 ≈ 3. When a0 is large, the ‘slowly decaying regime’ of degree
distribution will arise. Obviously, the effect of a0 on degree distribution is similar to δ.

From figure 1(c) one can find that the crossover point kcross increases with η. This is
an interesting feature of our model, which is different from other accelerating networks.
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(a) (b)

Figure 2. (a) Clustering coefficient C depending on δ for various values of a0 with η = 0.0.
(b) Clustering coefficient C versus η for different values of δ. In simulation, we fix m0 = 5 and
a0 = 0.25. The data are averaged over 30 networks of size N = 5000.

According to our stimulation, when η = 0.2 and the evolution time t = 104, almost only
the exponent γ1 < 2 can be observed. This finding is intuitively reasonable. Note that the
internal edges are created between all existing nodes in the considered model (including the
incoming nodes at each time step), thus these incoming nodes are possible to get more links
by internal attachment. The competition between the older nodes and the newly added nodes
help to increase the number of high-degree nodes and prevent some older nodes becoming
too stronger than the others. Therefore, the ‘rapidly decaying regime’ is suppressed and the
crossover point increases with η. This result is consistent with equation (9).

Finally, the slopes of the guidelines in figure 1 are in good agreement with the exponents
gotten by analytical calculation.

4.2. Clustering coefficient

An important phenomenon characterizing the deviation of real networks from the BA model
is clustering. In graph language, clustering means the presence of a large number of triangles.
It can be quantified by clustering coefficient C, a measure introduced by Watts and Strogatez
[17]. The clustering coefficient of a node i is defined as [18]

ci = 2si

ki(ki − 1)
, (10)

where ki is the degree of the node i, si is the actual number of edges between the ki neighbours
of the node i. Thus the clustering coefficient of the graph is given by the average of ci over all
the nodes in the network:

C = 〈c〉 = 1

N

∑
i

ci , (11)

where N is the total number of the nodes in the network. Higher clustering coefficient means
that two connected nodes have more chance to have a common neighbour.

The size of the network is fixed in simulation since the clustering coefficient is relevant
to the size of the network. It is found that the clustering coefficient of our model is tunable for
the parameters δ, a0, η, and is much higher than that of the BA model (in the BA model, the
clustering coefficient is near to zero). Figure 2(a) demonstrates that C increases with δ and
a0. From figure 2(b), one can see a very interesting phenomenon: the clustering coefficient is
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not a monotonous function of the parameter η. There is a crossover point ηc which is identical
for different δ. C increases with η when η < ηc and decreases with η rapidly when η > ηc.
We do not check all possible values of η, but we speculate that the value of ηc should be very
close to 0.1 on the simulations basis.

Every high-degree node tends to link with other high-degree nodes by internal attachment
and link with low-degree nodes by external attachment under preferential mechanism. As
δ and a0 become large, the internal edges grow acceleratedly, and the ratio of high-degree
nodes increases consequently. A large number of triangles emerge in the network due to these
high-degree nodes, so the clustering coefficient increases naturally.

On the other hand, the acceleration of nodes is also helpful to increase the ratio of high-
degree nodes. But we should emphasize that the size of the network is fixed in simulations, so
the acceleration of nodes results in shorter evolution time. This will decrease the proportion
of the internal edges and then cut down the ratio of high-degree nodes necessarily. Therefore,
one can find that the clustering coefficient increases with η at the beginning of the curve in
figure 2(b), but decays sharply soon after.

4.3. Degree assortativity coefficient

Assortative mixing is a concept rooted in social network. In social networks, we say that the
network shows assortative mixing if people prefer to associate with others who are like them
and disassortative mixing if they prefer to associate with those who are different. One way to
measure the assortativity mixing of a network is to calculate its degree assorativity coefficient
(or degree–degree correlation coefficient) r , which is defined in undirected networks as [19]

r = M−1 ∑
i jiki − [

M−1 ∑
i

1
2 (ji + ki)

]2

M−1
∑

i
1
2

(
j 2
i + k2

i

) − [
M−1

∑
i

1
2 (ji + ki)

]2 , (12)

where ji, ki are the degrees of the nodes at the ends of the ith edge, with i = 1, 2, . . . , M .
Positive degree assortativity coefficient indicates an assortative mixing type, as well as negative
degree assortativity coefficient homologizes a disassortative mixing type. It is well known that
the assorativity coefficient of BA network is near zero. But in real world, almost all the social
networks show positive assortativity coefficients while all the others, including technological
and biological networks, show negative coefficients [20]. The origin of this difference is
not understood either. In our views, it represents a feature that should be addressed in each
network individually.

We compute the degree assortativity coefficient r of the network generated by our model
with the size N = 5000. Simulations given in figure 3(a) show that the values of r decreases
when δ and a0 increase. Meanwhile, figure 3(b) demonstrates that the acceleration of nodes
leads to increasing r for a network with definite size. The values of r presented here are
supported by the empirical measurements of the technology networks (a majority of technology
networks show negative assortative coefficient, and the values of r are approximate in the range
−0.3 < r < −0.1 [20]).

4.4. Discussion

Our model is advantageous to describe the networks in which the internal edges are expected
to be more dominant for the system’s behaviour. This case is ubiquitous in real networks such
as word web, collaboration network and Internet network, etc. Most scientists, for instance,
working in a field for a long time, collaborate with other scientists who have concentrated
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(a) (b)

Figure 3. (a) Degree assortativity coefficient r versus δ for various values of a0 with η = 0.0. (b)
Degree assortativity coefficient r versus δ for various values of η with a0 = 0.15. In all cases, we
fix m0 = 5, and the data are averaged over 30 networks of size N = 5000.

efforts on the same research field and publish numerous subsequent papers. These relations
can all be regarded as internal edges in the collaboration network.

It is universal in real world that the degree distribution has two scaling regions, a ‘slowly
decaying regime’ followed by a crossover to a ‘rapidly decaying regime’ (see in [5, 14]). An
example is the word web, which shows explicit two-regimes scaling behaviour with exponents
3/2 and 3, respectively (see in [4]). We think the acceleration of internal edges may be a
plausible explanation of these phenomena.

Now let us point out another aspect of AGN briefly. Suppose a network is still in the
initial stage of its evolution, acceleration of nodes implies that it only need a short evolution
time to get a large size; however, the fraction of its internal edges may not be large enough.
In this instance, its scaling behaviour is similar to linear growth networks, e.g., the BA model,
and the ‘slowly decaying regime’ of degree distribution will be suppressed.

For simplicity, we only focus on the effects of the accelerated growth of edges and nodes
on the topology of the network. Perhaps a detailed modelling of the network would involve
many other factors such as individual fitness of the nodes, the gradual ageing of the nodes
or different growth fashions in different evolution stages, etc. Undoubtedly, including such
details in the modelling effort would increase the fidelity of the model. However, this should
need more detailed information of specific networks and necessarily increase the complexity
of the model. While challenging, following such path is beyond our goals.

5. Conclusion

In summary, we propose a general model of a nonlinear growth process which considers both
accelerated growth process of nodes and edges. Analytic and numerical results demonstrate
that two power-law regimes of degree distribution are possible. The fraction of the internal
edges plays a crucial role to influence the structure of the network. The accelerated growth
of internal edges is a necessary condition to observe the ‘slowly decaying regime’ of degree
distribution. Other nontrivial topological features of accelerated networks such as clustering
coefficient and degree assortative coefficient are all relevant to the two-hybrid nonlinear growth
process of networks. An important difference of our model from other accelerated networks
or linear growth networks is that the accelerated growth of nodes will have nontrivial effects
on the topology of the network.
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The accelerated growth of networks is more common than the linear growth. In many
situations, it is impossible to understand the feature of an evolving network without accounting
for this acceleration. Due to such nonlinear growth process, the density of the edges will
increases in time, the system must be able to operate in a global responsive way, and the
information flow must be more efficient than linear growth networks [21]. Of course, there
should be more complicated nonlinear growth fashion in the real world. We believe that the
study of such nonlinear growth of complex networks may give us a good answer of some real
systems.
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